
Customer: DualMint Limited
Date: October 21, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
DualMint Limited

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type NFT Marketplace

Platform EVM

Network Ethereum

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website https://www.dualmint.com/

Timeline 22.09.2022 – 21.10.2022

Changelog
27.09.2022 – Initial Review
12.10.2022 - Second Review
21.10.2022 - Third Review

www.hacken.io
2

https://www.dualmint.com/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 18

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.fmetaip462b
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by DualMint Limited (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/DualMint/Marketplace
Commit:

353aac8a82ec48937af3920f073dc89cea2e0429
Documentation: NatSpec

Integration and Unit Tests: Yes
Deployed Contracts Addresses:
Contracts:

File: ./contracts/FactoryNFT1155.sol
SHA3: a587b5d451e45945d806709a7c6123045b88dee83f9209ff4bc0c74f404689ad

File: ./contracts/Market.soll
SHA3: 4ba472bf09cb527d8cd03290cb161394da565ae0c8902ce02be13076af6ef0ec

File: ./contracts/NFT1155.sol
SHA3: ff4c0a2b68658195df6c0194ee28a9bb0ef86b99272ec7ed8bd0f9f314467663

Second review scope
Repository:

https://github.com/DualMint/Marketplace
Commit:

ed2ecc8112b66457d4d1e6173c404f3ddd538a2d
Documentation: NatSpec

Integration and Unit Tests: Yes
Deployed Contracts Addresses:
Contracts:

File: ./contracts/FactoryNFT1155.sol
SHA3: 34b843e269e8a2a50de06ffa90982ac5e26b9f3f5b344d41a9c87f437a6880e2

File: ./contracts/Market.sol
SHA3: f41d9ea87359e29ec287141589ba54a5a84ea25a31ebc4429ea38a033bcdd52c

File: ./contracts/NFT1155.sol
SHA3: 0e4ff91c9ff332bb2b75d765b2e886ffd29448fa0a91d14204299fc2a66e42f2

Third review scope
Repository:

https://github.com/DualMint/Marketplace
Commit:

664be9e7409862161e69c7a29cae39192a09b877

www.hacken.io
4

https://github.com/DualMint/Marketplace
https://github.com/DualMint/Marketplace
https://github.com/DualMint/Marketplace

Documentation: NatSpec

Integration and Unit Tests: Yes
Deployed Contracts Addresses:
Contracts:

File: ./contracts/FactoryNFT1155.sol
SHA3: 5eebf4c08cb1829b63b38157766701f8c989b71a242448100ec0a5b60cb3b2f4

File: ./contracts/Market.sol
SHA3: 159f2db2f12a8fa243be9f9aca15196d2b0f6e25db3f0f41ea38d922fb615879

File: ./contracts/NFT1155.sol
SHA3: 11d8187ba9a11ce36284c173156e34b70357de0b264fcfec8f29d2410b79ad41

www.hacken.io
5

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical descriptions are provided.

Code quality
The total Code Quality score is 9 out of 10.

● The development environment is configured.
● NatSpec annotation covers all code.
● The code follows the Solidity style guide.
● The code contains multiple duplications of calculations.

Test coverage
Test coverage of the project is 100.00%.

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is partially missed.
● Not all branches are covered.

Security score
As a result of the audit, the code contains 1 medium severity issue. The
security score is 9 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.1.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

26 September 2022 9 6 8 2

12 October 2022 2 1 0 0

21 October 2022 0 1 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Not Relevant

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Not Relevant

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

www.hacken.io
9

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
10

System Overview

DualMint Limited is a platform that aims to provide real Luxury Goods &
Collectibles through an NFT market. The system supports ERC1155 NFTs. The
system allows creation, direct purchases, auctions, and offers to listed
items from the users. The system supports ERC20 tokens as a paid currency.
There is a fee and royalties structure in the system. These fees and
royalties are deducted from each sale, auction, or offer.
The system consists of the following contracts:

● FactoryNFT1155.sol - ECR1155 handler
● NFT1155.sol - ERC1155 contract for the Dualmint marketplace that

facilitates minting NFT assets and updating their URIs
● Market.sol - NFTMarket contract for the Dualmint marketplace that

facilitates creation, buying, selling and auctions of tokenized
versions of luxury items

Privileged roles
● The owner of the Market contract can arbitrarily set royalties,

commission percentage, main currency for market, create
auction/direct sale on behalf of NFT owner, complete royalties
distribution. It is therefore entitled to impersonate or change the
logic of critical components of the system at will.

● The admin of the NFT1155 contract can mint new assets on behalf of
the NFT contract owner and modify token URIs.

● The owner of the NFT1155 can mint new assets.

Risks
● Only the owner of the Market contract can complete any incomplete

royalty loops.

www.hacken.io
11

Findings

Critical

1. Denial of Service Vulnerability

If the address with the winning bid were a contract without
ERC1155Receiver implementation, it would be impossible to complete
the asset's sale.

It will lead to a lock of the seller’s funds and royalties.

Path: ./contracts/Market.sol

Functions: endAuction, distributionOfFundsAndAssets

Recommendation: use a pull pattern for asset withdrawal. Create a
separate method from distribution of royalties and fees for asset
withdrawal by the address of the winning bid.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

2. Funds Lock

The owner of the market contract can change the main payment currency
at any time. In case the token is changed before users withdraw their
amount from the old sale/auction, there may not be enough new tokens
in the contract.

Tokens can get stuck on the contract.

Path: ./contracts/Market.sol

Function: setTokenAddress

Recommendation: remove function or implement a mechanism to prevent
described cases.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

High

1. Non-Finalized Code

The production code should not contain any functions or variables
that are being used solely in the test environment.

Path: ./contracts/NFT1155.sol

Recommendation: remove .hardhat/console.sol import.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

2. Requirements Violation

According to the requirement, the minimum price for sale items should
be greater than 1 USDC, but comparing values does not take into
account USDC token decimals.

www.hacken.io
12

Path: ./contracts/Market.sol

Functions: createMarketItem, assistedCreateMarketItem

Recommendation: consider actual token decimals in requirement.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

3. Undocumented Behavior

The NatSpec of the function resellItem() states that it should be
used for sale of an asset previously purchased on the marketplace.

It is possible to resell an item that was already on auction as a new
one. In this case, previous owners will not receive royalties.

Path: ./contracts/Market.sol

Functions: create, asistcreateItem

Recommendation: inline requirements with the documentation.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

4. Denial of Service Vulnerability

Hardcoded Gas amounts are used in the contract. It should not be
estimated how much Gas will be needed for some remaining operations.
Gas costs may change dramatically along with different blockchain
forks. There may be cases when the remaining Gas after performing the
operations in the loop will be less than that required for the
remaining operations.

It can lead to a block of distribution of the royalties for certain
item Ids.

Path: ./contracts/Market.sol

Functions: distributionOfFundsAndAssets, completeRoyaltyLoop

Recommendation: leave the distribution for up to 3 sales and
commission in function distributionOfFundsAndAssets. Implement a
pagination pattern to function completeRoyaltyLoop and distribute the
rest of the royalties with this method.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

5. Undocumented Behavior

According to the documentation, FactoryNFT1155 contract is for the
Dualmint marketplace. Function deployNFT1155 allows users to create
NFT for the marketplace specified by the user and Dualmint wallet as
an admin.

DualMint admin will have access to minting the user NFT’s and
allowing them for sale on different marketplaces.

Path: ./contracts/FactoryNFT1155.sol

Function: deployNFT1155
www.hacken.io

13

Recommendation: remove the possibility to set marketplace and instead
set DualMint market contract as FactoryNFT1155 constructor parameter.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

6. Finalized Code

payable addresses are used for the address of the deployer and the
owner of a market item. The current implementation of NFT market
contract cannot perform operations with the chain's native currency.

Path: ./contracts/Market.sol

Recommendation: remove payable from mentioned addresses or add a
description to the documentation why it is needed.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

7. Invalid Calculations; Denial of Service Vulnerability

The contract allows to exceed 100% for the sum of DM commission and
royalty’s percentage.

It can lead to reaching a failing assert statement for underflow.

Path: ./contracts/Market.sol

Functions: setRoyalties, setCommissionPercent

Recommendation: add a check to the methods setRoyalties and
setCommissionPercent to check if the total percentage does not exceed
100 %.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

Medium

1. Missing Events Emit on Changing Important Values

The contract does not emit any events after changing important
values. It is recommended to emit events after changing important
values. This will allow everyone to easily noticed such changes.

Path: ./contracts/Market.sol

Functions: setRoyalties, setCommissionPercent, setTokenAddress,
directMarketSale, resellItem

Recommendation: implement event emits after changing contract values.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

2. Unchecked Token Transfer

ERC20 transfer functions return bool after transfers, and it is
important to implement a return value check for this return value.
This issue leads to unintended behavior of the contract regarding
token transfer results.

Path: ./contracts/Market.sol
www.hacken.io

14

Functions: CreateBid, directMarketSale, withdrawFunds

Recommendation: implement a return value check for token transfers.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

3. Missing Allowance Check

The contract calls token transfer functions without checking the
allowance.

Path: ./contracts/Market.sol

Functions: CreateBid, directMarketSale

Recommendation: implement allowance check in mentioned functions.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

4. Code Duplication

In the source code, there is a duplication of function
implementation:

https://github.com/DualMint/Marketplace/blob/353aac8a82ec48937af3920f
073dc89cea2e0429/contracts/NFT1155.sol#L58

and
https://github.com/DualMint/Marketplace/blob/353aac8a82ec48937af3920f
073dc89cea2e0429/contracts/NFT1155.sol#L43

Avoid the use of duplicate code, as it will lead to an increase in
Gas usage during the deployment.

Path: ./contracts/NFT1155.sol

Functions: createToken, assistedCreateToken

Recommendation: create an internal method for mentioned functions and
remove code duplication.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

5. Code Duplication

The code contains multiple duplications of calculations.

Gas consumption is not optimal. Readability is decreased.

Path: ./contracts/Market.sol

Recommendation: use local variables to store calculated values.

Status: Reported

6. Usage of Hardcoded Values

Hardcoded values are used in calculations.

Readability is decreased.

www.hacken.io
15

https://github.com/DualMint/Marketplace/blob/353aac8a82ec48937af3920f073dc89cea2e0429/contracts/NFT1155.sol#L58
https://github.com/DualMint/Marketplace/blob/353aac8a82ec48937af3920f073dc89cea2e0429/contracts/NFT1155.sol#L58
https://github.com/DualMint/Marketplace/blob/353aac8a82ec48937af3920f073dc89cea2e0429/contracts/NFT1155.sol#L43
https://github.com/DualMint/Marketplace/blob/353aac8a82ec48937af3920f073dc89cea2e0429/contracts/NFT1155.sol#L43

Path: ./contracts/Market.sol

Recommendation: move hardcoded values to constants.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

Low

1. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Path: ./contracts/FactoryNFT1155.sol

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

2. Style Guide Violation

The provided projects should follow the official guidelines.

Path: ./contracts/FactoryNFT1155.sol,./contracts/Market.sol

Recommendation: follow the official Solidity guidelines.

Status: Fixed(664be9e7409862161e69c7a29cae39192a09b877)

3. State Variables' Default Visibility

The explicit visibility makes it easier to catch incorrect
assumptions about who can access the variable.

Path: ./contracts/FactoryNFT1155.sol

Recommendation: specify variables as public, internal, or private.
Explicitly define visibility for all state variables.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

4. Unindexed Events

Having indexed parameters in the events makes it easier to search for
these events using indexed parameters as filters.

Path: ./contracts/FactoryNFT1155.sol

Recommendation: use the “indexed” keyword to the event parameters

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

5. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

Path: ./contracts/FactoryNFT1155.sol

www.hacken.io
16

Function: deployNFT1155

Recommendation: implement zero address checks.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

6. Functions that Can Be Declared External

“public” functions that are never called by the contract should be
declared “external” to save Gas.

Paths: ./contracts/FactoryNFT1155.sol, ./contracts/Market.sol,
./contracts/NFT1155.sol

Functions: deployNFT1155, initialize, createToken,
assistedCreateToken, updateUri

Recommendation: use the external attribute for functions never called
from the contract.

Status: Fixed(664be9e7409862161e69c7a29cae39192a09b877)

7. Typos in Documentation

Any typos encountered in the provided documentation should be
addressed.

Paths: ./contracts/FactoryNFT1155.sol, ./contracts/Market.sol,
./contracts/NFT1155.sol

Recommendation: fix typos.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

8. Redundant Import

The use of unnecessary imports will increase the Gas consumption of
the code. Thus they should be removed from the code.

Path: ./contracts/Market.sol

Imports: ContextUpgradeable, IERC1155ReceiverUpgradeable

Recommendation: remove the redundant imports.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

9. Variable Shadowing

Function parameter owner shadows existing function from
OwnableUpgradeable inherited contract.

Path: ./contracts/Market.sol

Function: assistedCreateMarketItem

Recommendation: Rename related argument.

Status: Fixed(ed2ecc8112b66457d4d1e6173c404f3ddd538a2d)

www.hacken.io
17

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
18

